da Science: a Discovery in Comics di Margreet de Heer
Il matematico cinese Liu Hui, vissuto tra il 220 e il 280, all'interno del suo più noto trattato, lo Jiuzhang suanshu, che si può rendere come I nove capitoli dell'arte matematica, propone un metodo che è una variazione di quello di Archimede con l'ausilio del teorema di gougu, o teorema dell'ipotenusa, ovvero il teorema di Pitagora.
L'idea di Liu Hui è quella di calcolare il rapporto tra circonferenza e diametro per iterazione, calcolando il perimetro di figure inscritte in una circonferenza di raggio $r$ con un numero di lati sempre maggiore. Supponiamo che il segmento $AB = p_{n-1}$ nella figura sia il lato di un poligono regolare con un numero di lati $N = 3 \cdot 2^{n-1}$. $AY$ sarà la metà di $AB$, e quindi, utilizzando il teorema di Pitagora \[OY = \sqrt{r^2 - \left ( \frac{p_{n-1}}{2} \right )^2}\] da cui per sottrazione la lunghezza di $XY$. Questo vuol dire che, utilizzando ancora una volta Pitagora, si riesce a ricavare la lunghezza $AX$, che è la lunghezza del lato del poligono regolare con numero di lati $N = 3 \cdot 2^n$: \[p_n = \sqrt{r \left ( 2r - \sqrt{4r^2 - p_{n-1}^2} \right )}\] Ponendo $r=1$, il valore approssimato del pi greco sarà dalla metà di $p_n$. Aumentando $n$, e quindi il numero dei lati della figura, aumenta la precisione del calcolo. Liu Hui ottenne come approssimazione 3.14159, che corrisponde a un $n$ di 3072.
Restando alla matematica asiatica, sono da segnalare le approssimazioni di Zu Chongzhi, anch'egli matematico e astronomo cinese, vissuto tra il 429 e il 500, che calcolò $\pi$ inscrivendo un poligono di 12288 lati in una circonferenza. Fornì un valore compreso tra 3.1415926 e 3.1415927 e due approssimazioni razionali, 355/113 e 22/7.
Il matematico giapponese Arima Yoriyuki ha, invece, fornito nel 1776 un'approssimazione razionale corretta fino alla 29.ma cifra \[\pi \approx {\frac {428224593349304}{136308121570117}}\]