Stomachion

venerdì 11 settembre 2015

L'entropia di espansione

Breve post piuttosto tecnico che introduce una nuova quantità matematica, l'entropia di espansione. Nella speranza che le poche parole scritte non siano così complesse, vi lascio alla veloce lettura.
In termini semplici l'entropia di espansione (expansion entropy) è un nuovo modo per calcolare l'entropia di un dato sistema.
L'entropia di espansione utilizza la linearizzazione del sistema dinamico e una nozione di volume nel suo spazio degli stati.
Da un punto di vista matematico, possiamo descrivere l'evoluzione di un dato sistema $M$ utilizzando una mappa (una funzione, un'applicazione) che agisce sullo stesso sistema $M$: $f: M \rightarrow M$. Ognuna della mappe $f$ dipende dal tempo, che può essere discreto o continuo.
Utilizzando queste mappe si può costruire la così detta matrice delle derivate $Df$, che è costituita dalle derivate parziali di $f$ rispetto alle $n$ coordinate dello spazio $M$ (dobbiamo considerare uno spazio generico, quindi le sue dimensioni possono essere in numero differente dalle usuali 3 o 4, se consideriamo ad esempio lo spaziotempo).
A questo punto facendo uso di $Df$, si può calcolare la funzione $G(Df)$, che è
il tasso di crescita di un volume locale per la (tipicamente non lineare) funzione $f$.
o in altri termini un modo per misurare la crescita di $M$ nel tempo.
Ora $G(Df)$ verrà integrata su tutto lo spazio $n$-dimensionale e rinormalizzata sul suo volume, e la nuova quantità $E(f, S)$ così calcolata sarà utilizzata per definire l'entropia di espansione: \[H_0 (f, S) = \lim_{t' \rightarrow \infty} \frac{\ln E_{t', t} (f, S)}{t'-t}\] dove $t'$ è il tempo finale, $t$ quello iniziale.
In questo modo l'entropia di espansione misura il disordine del sistema, proprio come l'entropia topologica, ma utilizzando l'entropia di espansione si può definire il caos come $H_0 > 0$.
Hunt, B., & Ott, E. (2015). Defining chaos Chaos: An Interdisciplinary Journal of Nonlinear Science, 25 (9) DOI: 10.1063/1.4922973 (arXiv)

Nessun commento:

Posta un commento