Network Bar

mercoledì 20 marzo 2019

[812] - Primavera

Una Luce esiste in Primavera
Non presente nell'Anno
In nessun altro periodo -
Quando Marzo è a mala pena qui.

martedì 19 marzo 2019

Le ultime pagine

Il 24 maggio 1543 le ultime pagine del suo libro arrivarono da Norimberga. Donner le portò al letto del malato, e l'istante successivo vide la vita abbandonare il suo corpo, come se Copernico avesse resistito tutti quei mesi solo per vedere il libro terminato.
- da Il segreto di Copernico di Dava Sobel
I tempi, nella memoria, si confondono, mentre gli eventi sembrano susseguirsi a scatti, come scene di un film. Così potrei dire di avere un'idea abbastanza precisa di ciò che dovrebbe aver provato Jerzy Donner in quel momento: entrare nella sala rianimazione un'ultima volta e poi, alcune ore dopo, ricevere l'annuncio della fine delle sue sofferenze, come se avesse atteso che fossimo di nuovo tutti insieme.
Quasi un anno e mezzo fa.
Non me la sento di scrivere di più su mio padre e su come ha lottato letteralmente fino all'ultimo respiro, ma in qualche modo oggi sentivo la necessità di doverlo ricordare.

lunedì 18 marzo 2019

Il mondo povero di Yona Friedman

Yona Friedman non è un anarchico, anche se ha avuto molte influenze libertarie. Queste, in particolare, si notano in un testo di rapida lettura ma di grande chiarezza, Come vivere con gli altri senza essere né servi né padroni, riportato in Italia grazie ad elèuthera, meritoria piccola casa editrice di testi anarchici i cui libri solitamente mi procuro presso Il libraccio o presso quell'altra meritoria istituzione che si chiama Book Pride.
Ciò che colpisce di più del saggio di Friedman è l'agile commistione tra disegni e testo. I disegni, che in pratica sono schematici, molto simili alle pitture rupestri realizzate dai nostri antenati primitivi prima dell'invenzione della scrittura, rendono più semplice la comprensione delle idee di Friedman sull'esistenza di due generi di gruppi distinti, quelli paritari e quelli gerarchici. E' evidente che Friedman non si schiera a favore di uno o dell'altro, ma semplicemente cerca di descriverli nel modo più oggettivo possibile in un certo senso per permettere al lettore di poter scegliere quale sia la sua condizione preferita. Il motivo di questa scelta è evidente, ed è ben raccontato nella parte centrale del libro, 24 pagine di un testo lucido e incentrato sul mondo povero, dove l'architetto anticipa i movimenti sulla decrescita suggerendo che, in vista del possibile crollo dell'attuale modello gerarchico cresciuto ben oltre le proprie capacità, le istituzioni dovrebbero iniziare a realizzare strutture locali autonome in grado di distribuire le risorse primarie senza la necessità di attendere rifornimenti o ordini dal centro. Inoltre Friedman non solo ritiene che tale modello sia più efficace, ma permetterebbe anche una riduzione dei commerci, oltre che una diminuzione della specializzazione, rispondendo anche a una delle obiezioni più classiche, quella sul progresso tecnologico: il suo esempio più lampante sono proprio i gruppi di ricerca, che in tutto il mondo riescono, senza eccessive specializzazioni al loro interno, a costruire tecnologie e conoscenze che prima non c'erano. In questo senso la sempre maggiore specializzazione degli scienziati sembrerebbe un ostacolo, che in qualche modo viene controbilanciato dalla maggiore multidisciplinarietà di molte linee di ricerca considerate di frontiera, come ad esempio quelle astrobiologiche.
In qualche modo il modello della ricerca scientifica potrebbe essere proprio la strada da seguire per la costruzione di una società un po' più vicina a quella libertaria, ma questa è solo una delle conclusioni di chi scrive alla chiusura di un testo diretto non solo grazie alla prosa chiara di Friedman, ma anche grazie all'uso di disegni schematici e di facile comprensione.

domenica 17 marzo 2019

Topolino #3303: Un piccolo destino

Tolta la storia d'apertura, L'enigmatica stoffa inconsumabile, il resto del numero del Topolino in edicola questa settimana vivacchia tenendosi intorno a un livello medio basso, iniziando dalla seconda e ultima parte della nuova storia dei Wizards of Mickey.
Plasmare un nuovo destino
L'idea di fondo della storia, rivelata nel finale ma abbastanza evidente sin dal titolo della saga, Destino, è più che lodevole. Il modo di sviluppare il compito risulta, invece, un po' confusionario, come se in fase di stesura della sceneggiatura Matteo Venerus abbia ritenuto opportuno tagliare elementi e situazioni che avrebbero reso più scorrevole la storia. In effetti sembra essere di fronte a una narrazione che procede a scatti, con scene e vignette che non sono ben collegate una all'altra, il che è un peccato sostanzialmente per due motivi: il soggetto, per quanto classico nel genere fantasy, risulta comunque interessante anche per il modo in cui Venerus sembrava volerlo sviluppare; inoltre i disegni di Roberto Marini sono come al solito belli da vedere e in alcune vignette spettacolari, anche grazie alla capacità dell'esperto disegnatore disneyano di passare da una costruzione classica della pagina a una più dinamica e supereroistica (giusto per dare un termine di paragone).

sabato 16 marzo 2019

Madre Terra

Il mito della Grande Madre, anche intesa come Madre Natura o come Madre Terra, è comune a molte culture primitive ma non solo. In pratica la Grande Madre è una divinità, o entità femminile che incarna il ciclo di nascita-sviluppo-maturità-declino-morte-rigenerazione tipico non solo degli esseri umani, ma anche del ciclo cosmico. Non a caso Children of the Sea, manga in cinque tankobon di Daisuke Igarashi uscito nel 2014 in Italia per Panini Comics, è ricco di miti sulla creazione del mondo, dove le entità femminili hanno un ruolo fondamentale, e sui loro legami con le stelle lontane. Ovviamente è un legame mitico, mistico e interiore che i protagonisti di Children of the Sea sperimentano nel corso della loro ricerca, in qualche modo non molto diversa dalla ricerca di Ronnie James Dio nella sua prima canzone per i Black Sabbath:
In the misty morning, on the edge of time
We've lost the rising sun, a final sign
As the misty morning rolls away to die
Reaching for the stars, we blind the sky

venerdì 15 marzo 2019

Breve storia del pi greco / parte 6

E siamo giunti alla sesta puntata della "breve storia del pi greco" che sto componendo con certosina pazienza all'interno dei Carnevali della Matematica in edizione "pi day". E anche se l'edizione #127 è ancora abbastanza fresca, eccovi subito la puntata 2019 della storia del numero che ha fatto la matematica!


Dilbert di Scott Adams

Nel 1910 il più noto matematico indiano, Srinivasa Ramanujan, trovò una serie di formule rapidamente convergenti per il calcolo delle cifre decimali del $\pi$. Una di queste è già comparsa in una delle precedenti puntate della breve storia. La ripropongo anche qui per rinfrescare la memoria: \[\frac{1}{\pi} = \frac{2 \sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4k!) (1103 + 26390k)}{(k!)^4 396^{4k}}\] Un'ampia collezione di formule e metodi per determinare le cifre decimali del $\pi$ dovute a Ramanujan sono presenti in un suo articolo del 1914, Modular equations and approximations to $\pi$, che sono anche la base di partenza per le così dette formule di Ramanujan-Sato, sviluppate a partire dal lavoro del 2002 di Takeshi Sato proprio sull'articolo di Ramanujan. Di questo genere di formule ne esistono 11 tipi o livelli, ma tutte sono riducibili alla seguente struttura: \[\frac{1}{\pi} = \sum_{k=0}^\infty s(k) \frac{Ak+B}{C^k}\] dove $s(k)$ è una sequenza di interi che può essere espressa usando i coefficienti binomiali (che per semplificare possiamo dire sono i numeri di cui è fatto il triangolo di Tartaglia, o di Pascal, dipende se siete italiani o francesi!), mentre $A$, $B$, $C$ sono forme modulari, ovvero funzioni analitiche a più dimensioni generalmente a valori complessi... e più semplice di così non riesco a spiegarle. O forse potrei proporre come esempio di forma modulare la serie di Eisenstein (che peraltro è stata oggetto di studio proprio di Ramanujan): \[E_k(\Lambda) = \sum_{0 \neq\lambda\in\Lambda}\lambda^{-k}\] dove $k$ è un intero maggiore di $2$, condizione necessaria per la convergenza della serie, mentre $\lambda$ è un vettore dello spazio $\Lambda$.
L'aspetto interessante del coinvolgimento delle forme modulari è che le serie di Ramanujan-Sato note fino al 2012 coinvolgevano numeri reali, ma la prima con numeri complessi venne scoperta proprio quell'anno dal trio Heng Huat Chan, James Wan, Wadim Zudilin, che hanno contribuito abbondantemente allo sviluppo di questa particolare tipologia di successioni, che peraltro sono alla base degli algoritmi utilizzati oggi per determinare sempre più cifre del $\pi$.

giovedì 14 marzo 2019

Carnevale della Matematica #127

E' passato un anno, ma appena dieci edizioni, dall'ultimo pi day festeggiato insieme e anche per questo 2019 l'edizione di marzo del Carnevale della Matematica viene ospitata, per l'ottavo anno di fila, qui su DropSea. Il Carnevale, nel frattempo, è giunto alla ragguardevole cifra di 127 edizioni, per cui prima di addentrarci tra i contributi di questo mese e le ormai consuete notizie pi greche permettetemi di introdurvi alle curiosità legate al numero principe dell'edizione.
31.mo numero primo dopo il 113 e prima del 131, il 127 è un numero primo di Mersenne, come il 107, un numero primo isolato, poiché né 125 = 127 - 2 né 129 = 127 + 2 sono numeri primi, e un numero primo cubano. No, questo genere di numeri non è stato scoperto né da un matematico cubano, né è stato visto scorrazzare sulle spiaggie di Cuba, ma nella sua espressione gioca un ruolo fondamentale il cubo.
In effetti si distinguono due tipi differenti di primi cubani, quelli della prima forma, ricavabili dalla seguente espressione: \[p = \frac{x^3-y^3}{x-y} \text{ con } x = y+1\] ovvero della forma \[3y^2+3y+1\] e quelli della seconda forma \[p = \frac{x^3-y^3}{x-y} \text{ con } x = y+2\] ovvero della forma \[3y^2+6y+4\] con $y$ numero intero positivo. In particolare il 127 è un primo cubano della prima forma: per generarlo basta mettere 6 al posto di $y$. In realtà non tutti i numeri di questa forma sono anche primi. Ad esempio per $y$ pari a 5 si ottiene 91, che è solo dispari, e per $y$ pari a 7 ecco 169 come risultato, neanch'esso primo. Sempre restando nel "dominio" dei numeri primi, il 127 è anche la somma dei primi 9 numeri primi dispari.
Il 127 è anche un numero esagonale centrato, ovvero uno di quei numeri che può essere rappresentato con la forma di un esagono e assume l'espressione matematica \[1 + 3n (n-1)\] che sviluppandola diventa \[3n^2 -3n +1\] che non è molto differente dalla prima forma dei numeri cubani. E infatti i numeri esagonali che si ottengono con $n$ intero positivo sono gli stessi numeri cubani della prima forma, numero 1 a parte che è "solo" esagonale (è cubano, ma non primo cubano, per $y = 0$).
Tornando un attimo ai numeri primi di Mersenne, ovvero numeri della forma $2^n-1$, si scopre agilmente che 127 è il più piccolo primo di Mersenne triplo. Il motivo è che $127 = 2^7-1$ e $7=2^3-1$, con $3=2^2-1$ il più piccolo numero di Mersenne e $7$ il più piccolo numero di mersenne doppio.
Il 127 è anche un numero di Motzkin, il settimo per la precisione. Questi numeri curiosi vennero scoperti da Theodore Motzkin in ambito geometrico.
Li spiego con un esempio: supponiamo di mettere su una circonferenza 4 punti. A questo punto ci possiamo chiedere in quanti modi possiamo collegare i punti con delle corde che non si intersecano. La risposta è 9, che è anche il quinto numero di Motzkin. Ovviamente ogni numero di questo genere risponde proprio alla domana su quanti modi esistono per collegare $n$ punti su una circonferenza con corde non intersecantesi.
E' anche un numero di Friedman in ben due basi differenti. In base 10: \[120 = -1+2^7\] e in base 2: \[1111111 = (1 + 1)^{111} - 1 \cdot 1\] dove ovviamente 1111111 è la rappresentazione binaria di 127.
Come il 117 è un numero congruente e nontotiente e come il 37 è anche fortunato. Inoltre fa parte della terna pitagorica (127, 8064, 8065).
Altra proprietà curiosa è quella di essere il numero dispari più piccolo che non può essere scritto nella forma $p + 2^n$, con $p$ numero primo ed $n$ intero.
Fuori dall'ambito matematico il 127 è associato a due oggetti celesti, la cometa 127P/Holt-Olmstead e l'asteroide 127 Johanna.
Come di consueto i pezzi di storia del pi greco sono inseriti tra un contributo e l'altro come notizie pi greche, per cui iniziamo subito con i contributi dei carnevalisti per l'edizione 2019 del pi day!

martedì 12 marzo 2019

I Rompicapi di Alice: Tutta questione di memoria


Carl Gauss
La leggenda più nota per raccontare il precoce talento di Carl Friedrich Gauss è la classica storia in cui il piccolo riuscì a sommare i primi 100 numeri naturali, compito lasciato alla classe di cui era studente per tenere buoni i bambini durante un'improvvisa assenza della maestra. Eppure la storia che racconta Martin Gardner sul numero di aprile del 1965 di Scientific American è ancora più sconvolgente: il buon Gauss era figlio di un muratore e mentre il padre stava sistemando il libro delle paghe dei suoi lavoratori, il giovane Carl gli disse che i conti erano sbagliati. A questo punto, anche solo per dimostrare che il figlio si sbagliava, Gauss senior ricontrollò i calcoli scoprendo che, al contrario, il piccolo Carl aveva affermato il giusto: aveva solo 3 anni e nessuno gli aveva ancora insegnato nulla sulla matematica!
Nella storia della matematica, Gauss è uno dei pochi principi di questa disciplina ad avere avuto non solo una grande creatività, ma anche una velocità di calcolo inavvicinabile, sorretta evidentemente da una forte memoria. Queste ultime caratteristiche non sono spesso abbinate con la prima, la creatività, e anzi in alcuni casi ne sono di impedimento, ma Gauss non è l'unico esempio di grandi scienziati che sono stati in grado di abbinare queste tre capacità in una sola mente.
Altro esempio a noi più recente è quello di John von Neumann. Pioniere nell'ideazione e progettazione dei moderni computer, era anche molto abile nel calcolo a mente. Si narra infatti che, quando era a Los Alamos, era tenuto da conto come uno degli esperti del calcolo insieme con Enrico Fermi e Richard Feynman: in particolare, mentre l'italiano prendeva il regolo calcolatore e Feynman la calcolatrice, von Neumann utilizzava solo il calcolo mentale. E ovviamente non aveva alcun timore di sbagliare, più o meno come tutti i... "calcolatori".
A riprova, però, della difficoltà di mettere insieme velocità di calcolo, memoria e creatività c'è, però, il confronto tra von Neumann e altri campioni del calcolo a mente, che fanno letteralmente scomparire le abilità degli scienziati qui citati o di altri come Leonhard Euler o John Wallis, anch'essi abili a calcolare senza l'ausilio di carta e penna.