Innanzitutto partiamo da un gas a densità uniforme. Nel modello si suppone che i cambiamenti di tipo radiativo e idrodinamico che avvengono all'interno del gas sono molto più lenti del tempo dovuto a una distribuzione di velocità maxwelliana sia per gli ioni, sia per gli elettroni. Ci si pone, poi, all'equilibrio cinetico, ovvero le temperature cinetiche $\theta$ di ioni ed elettroni sono identiche.
Per calcolare la successiva evoluzione del gas si usa le equazioni per il trasporto e il riscaldamento della materia, includendo anche termini che descrivono le proprietà radiative del plasma. I coefficienti di assorbimento ed emissione sono funzioni del numero di legami e di elettroni liberi per atomo. Le popolazioni sono poi determinate dai processi di distacco e ricombinazione, sia dovuti alle radiazioni sia dovuti agli urti. Poiché le popolazioni sono parzialmente determinate dalla radiazione, non si possono calcolare a meno di non specificare il campo della radiazione.
Nell'approssimazione nota come equilibrio locale termodinamico (local thermodynamic equilibrium - LTE), le popolazioni sono quelle che ci sarebbero se l'equilibrio termodinamico fosse alla temperatura cinetica locale $\theta$. Ciò sarebbe corretto se la radiazione fosse di tipo planckiano o se fossero dominanti i processi di collisione elettroni-ioni. Questo assunto consente di utilizzare le equazioni di Boltzman-Saha che sono funzioni solo della composizione elementare, della densità di massa e della temperatura.
Supponiamo, però, che la radiazione sia non-planckiana e che i tassi di transizione radiativa non siano inferiori a quelli collisionali. La popolazione deve allora essere trovata usando equazioni che incorporano esplicitamente l'accoppiamento con la radiazione come funzione del tempo. Ovvero queste equazioni costituiscono le equazioni non-LTE.
Questo vuol dire che proprietà come assorbimento ed emissione sono influenzate anche dai cambiamenti nella popolazione, e tutto questo può essere descritto solo con un insieme completo di equazioni che copra tutte le possibilità: è proprio per fare ciò che è stato sviluppato il modello XSNB.
(via NIF)