
A Formal Proof of a Continued Fraction Conjecture for \(\pi\) Originating from the Ramanujan Machine
Provides a formal analytic proof for a class of non-canonical polynomial continued fractions that represent \(\pi/4\), which was originally conjectured by the Ramanujan Machine using algorithmic induction.Analytic Regularization of a Ramanujan Machine Conjecture
Provides a formal analytic derivation of a continued fraction identity for \(-\pi/4\), which was recently conjectured by the Ramanujan Machine.La macchina di Ramanujan è un software sviluppato da un team di ricercatori dell'istituto israeliano di tecnologia, il Technion, allo scopo di scoprire nuove formule matematiche. I dettagli del progetto sono stati pubblicati nel 2021 su Nature.
Nessun commento:
Posta un commento