
da I trent'anni che sconvolsero la fisica di George Gamow
In questo caso gli operatori sono gli oggetti matematici utilizzati per rappresentare le grandezze fisiche. A differenza dei numeri usuali, per gli operatori la proprietà di commutazione, ovvero $a \cdot b = b \cdot a$, non vale in generale. Quindi quando due operatori non commutano, è possibile scrivere un principio di indeterminazione, che dal punto di vista della fisica implica che esiste un limite nella precisione con cui si possono eseguire misure contemporanee delle due grandezze.
Nel caso del principio di indeterminazione classico introdotto nel 1927 da Werner Heisenberg(1) questo implica che se vogliamo misurare la posizione di una data particella con la stessa precisione con cui misuriamo la quantità di moto, le due misure devono avvenire in momenti differenti.
In realtà questo fatto non dovrebbe essere nemmeno così stupefacente: le due grandezze sono correlate e l'errore sulla posizione può essere ricavato a partire dall'errore sulla quantità di moto e viceversa; d’altra parte è molto più semplice, classicamente parlando, una misura diretta della posizione rispetto a una della quantità di moto, che è una grandezza derivata della prima(2). Quindi l'errore sulla posizione influenza quello sulla quantità di moto.