La caduta a spirale dell'elettrone

La storia inizia con Ernest Rutherford. Se ricordate nella serie delle scoperte, avevamo visto come il fisico neozelandese aveva giocato un ruolo fondamentale nella scoperta del protone.
Rutherford, all'inizio del XX secolo, si trovava a Cambridge presso il prestigioso Cavendish Laboratory diretto da Joseph John Thomson che, dopo aver scoperto l'elettrone nel 1897, aveva proposto il famoso modello a panettone per l'atomo, ovvero una distribuzione di carica positiva con all'interno le cariche negative sparse qua e la come l'uvetta in un panettone. Rutherford, però, nel 1909 conducendo una serie di esperimenti con delle lamine d'oro scoprì che all'incirca una particella alfa su ottomila veniva respinta indietro. Dopo aver ripetuto l'esperimento varie volte, il fisico neozelandese concluse che l'unica spiegazione plausibile per tale comportamento era che all'interno dell'atomo doveva esistere un centro di carica positiva, mentre l'elettrone, la carica negativa, ruotava intorno a tale nucleo. Successivi esperimenti scoprirono che il nucleo occupava un millesimo di miliardesimo del volume dell'atomo con una massa del 99.98%: l'atomo era dunque una immensa distesa di vuoto, proprio come il Sistema Solare.
A causa dell'incredibile fiducia che i fisici riponevano nella meccanica dell'epoca, ovvero nelle leggi che oggi identifichiamo come "fisica classica" sviluppate da Galileo Galilei, Isaac Newton e raffinate da James CLerck Maxwell, nessuno all'epoca si era chiesto come mai l'elettrone non cadesse all'interno del nucleo. In realtà il modello di Rutherford destò l'interesse di Niels Bohr che, nel 1912, si ritrovò a lavorare proprio con Rutherford. La possibilità di accedere ai dati sperimentali del grande fisico, permise al teorico danese di constatare una certa incompatibilità tra il modello di Rutherford e le equazioni di Maxwell: secondo queste ultime l'elettrone avrebbe dovuto perdere energia a ogni giro, ridurre il raggio della sua orbita e finire inevitabilmente all'interno del nucleo in quella che può essere vista come una vera e propria caduta a spirale.
Quindi la conclusione doveva essere una di queste due: o gli esperimenti di Rutherford erano sbagliati o le equazioni di Maxwell non erano lo strumento matematico corretto per descrivere il comportamento di un elettrone all'interno dell'atomo.
Bohr optò per la seconda ipotesi, confortato dai risultati teorici ottenuti da Max Planck e Albert Einstein nel decennio precedente: Niels, infatti, avanzò l'ipotesi che l'elettrone nel nucleo può muoversi solo a determinate orbite. Ciascuna di queste orbite è associata a una diversa energia e l'elettrone può salire a un'orbita superiore solo se acquista un'energia pari alla differenza tra le due orbite, oppure se l'elettrone è su un'orbita superiore, può scendere a quella inferiore rilasciando sotto forma di fotone una quantità di energia pari alla differenza tra i due livelli: nasceva il modello dell'atomo di idrogeno di Bohr.
L'eleganza dell'idea venne accompagnata dalla correttezza dei risultati: il modello di Bohr era in grado di prevedere correttamente tutti i livelli dello spettro dell'idrogeno, ma già quando si provava ad applicare il modello all'elio, modello ed esperimenti non erano più in accordo. Era necessario introdurre qualche nuovo elemento nella faccenda. Il primo nuovo elemento lo introduce Louis de Broglie suggerendo che, così come la luce intesa come onda mostra comportamenti particellari, allora anche le particelle come gli elettroni possono mostrare comportamenti ondulatori. A partire da questo punto, Werner Heisenberg, ritiratosi sull'isola di Helgoland nel Mare del Nord per pensare meglio, elaborò la rappresentazione matriciale della meccanica quantistica che aveva come conseguenza il suo famoso principio di indeterminazione