Stomachion

Visualizzazione post con etichetta michael berry. Mostra tutti i post
Visualizzazione post con etichetta michael berry. Mostra tutti i post

mercoledì 3 luglio 2019

La fase di Berry dei buchi neri

In meccanica quantistica una fase geometrica, anche detta fase di Berry è una differenza di fase che un dato sistema fisico acquisisce nel corso di un ciclo durante il quale il sistema stesso è sotto l'azione di un processo adiabatico. Tale fase è legata alle proprietà geometriche del sistema stesso (il che è una semplificazione, ma per i nostri scopi non serve scendere eccessivamente nel dettaglio).
Venne scoperta indipendentemente da Shivaramakrishnan Pancharatnam nel 1956(1), Hugh Christopher Longuet-Higgins(2) nel 1958 e successivamente generalizzata da Michael Berry(3) nel 1984. Questa fase, per quanto sia geometrica, ha degli effetti fisici misurabili ad esempio in un esperimento di interferenza. Un esempio di fase geometrica è il pendolo di Foucault.

sabato 10 giugno 2017

Le grandi domande della vita: la perfezione di Olinto

Scusandomi con i lettori per il leggero ritardo nella pubblicazione della consueta rubrica, vado immediatamente a raccontarvi di un numero che attirerebbe immediatamente l’attenzione di Paperon de Paperoni!
Il numero perfetto
Un tale pose una coppia di conigli in un luogo circondato da pareti. La coppia iniziò a riprodursi a partire dalla fine del primo mese e ogni mese generò una nuova coppia di conigli. Tutte le coppie, nate nel corso dell’anno, iniziarono a riprodursi a partire dal secondo mese dopo la nascita e anch’esse generarono una nuova coppia ogni mese.
Quante coppie di conigli nascono complessivamente in un anno?
La soluzione di questo rompicapo, proposto da Leonardo Fibonacci, è la famosa serie numerica che porta il suo nome, $1$ $1$ $2$ $3$ $5$ $8$ $13$ $21$ e così via. In generale l’$n$-simo numero della serie di Fibonacci è dato da: \[F_n = F_{n-2} + F_{n-1}\] Nel 1611 Johannes Kepler, italianizzano come Giovanni Keplero, scoprì che il rapporto tra due numeri consecutivi di Fibonacci approssimava sempre meglio il numero aureo $\varphi$, mentre per attendere un legame formale tra la serie e $\varphi$ bisogna attendere la formula scoperta da Jacques Binet: \[F(n) = \frac{\varphi^n - (1-\varphi)^2}{\sqrt{5}}\] La scoperta del numero aureo viene tradizionalmente associata al pitagorico Ippaso di Metaponto ed è legata allo studio del pentagono regolare. In particolare il numero aureo viene definito come il rapporto tra una diagonale del pentagono e un suo lato. Il fatto che il pentagono fosse una figura geometrica dagli attributi praticamente mistici per i pitagorici(1), ha reso lo stesso $\varphi$ un numero di una certa importanza, tanto che gli antichi greci pensavano che le proporzioni perfette, quelle del bello, fossero legate esattamente al valore di tale numero $\varphi$.
E spero sinceramente che ciò possa rispondere alla prima curiosità sul perché il numero aureo è perfetto.

venerdì 21 ottobre 2011

Un po' d'ordine, please

Partiamo dalla fine. Ieri al Dipartimento di Fisica in via Celoria a Milano, Luca Stanco prima e Francesco Villante poi hanno presentato due seminari sulla misura della velocità superluminale dei neutrini. Di novità vere e proprie, in effetti ce n'è una sola, data da Stanca.
Luca è uno dei 15 collaboratori di OPERA che non ha firmato, per vari motivi, il famoso preprint con la misura. Di motivi ce ne sono alcuni, per non essere sicuri già solo della pubblicazione, visto il tipo di risultato che si andava a presentare. Ad ogni modo alcuni di questi, comunque abbastanza noti, sono nell'assoluta certezza che le due funzioni di distribuzione delle probabilità di protoni e neutrini siano identiche. Ricordo, infatti, come già ricordò ieri Stanco, che i neutrini vengono prodotti a partire da un fascio di protoni, che poi sono questi a venire misurati al CERN (abbastanza interessante notare come la differenza di velocità tra protoni e neutrini prodotti è pressoché trascurabile). A questo sono da aggiungere eventuali correzioni al moto della Terra, che sono comunque state fatte e hanno portato ad aumentare il ritardo dei fotoni di circa 2 ns, e la chiarificazione di tutti quegli altri piccoli dettagli che potrebbero contribuire al tempo di volo, senza dimenticare uno studio per capire la presenza di eventuali effetti dovuti all'alternanza di giorno e notte o alla stagionalità. Tutti questi motivi, però, non sono alla base dell'annuncio che Stanco ha diffuso ieri alla chiusura del suo seminario, ovvero che
La collaborazione ha deciso di rinviare di un mese la sottomissione dell'articolo su rivista referata.
Il motivo principale (anche se di motivi ce ne sono due, ma non ho fatto in tempo, uno, ad appuntarlo) è che al CERN stanno preparando dei nuovi treni di protoni appositamente per ripetere la misura sulla velocità del neutrino. Misura che si stanno attrezzando a ripetere sia quelli di MINOS sia quelli di BOREXINO, esperimento adiacente a quello di OPERA.
La seconda parte del pomeriggio è invece passata ascoltando il teorico Villante che ha fatto un breve esame di alcuni (3/4 articoli) tra l'ottantina di preprint usciti da allora su arXiv. Della selezione fatta, oltre all'articolo di Glashow e Cohen, che ha fatto dire in giro un po' dappertutto che l'esperimento di OPERA veniva così falsificato (leggete, ad esempio, Reading science o Tommaso Dorigo dopo l'uscita del preprint di ICARUS sulla faccenda), Villante ha anche tirato fuori dal cilindro un interessante preprint di Micozzi e Bellini che ha animato la discussione nonostante Villante avesse già mostrato come l'idea non era per nulla sufficiente per spiegare il risultato di OPERA. Una spiegazione ottica, o più o meno ottica, è sembrata intrigare non poco i convenuti, ai quali probabilmente è sfuggito un altro preprint, quello di sua maestà sir Michael Berry, scritto tra l'altro insieme con Brunner, uno dei fisici che all'inizio di questo millennio ha lavorato proprio alla superluminalità ottica. Nel loro articolo, sottomesso, per inciso, al Journal of Physics A, arrivano alle stesse conclusioni di Villante, peraltro riproducendo il termine presente nel preprint di Micozzi e Bellini per altre, più brevi vie. E vediamo un po' quale è la storia di questa spiegazione ottica.
Tutto inizia (almeno il mio interesse sulla questione) con la citazione finale di Fast light, fast neutrinos? by Kevin Cahill(12):
A group velocity faster than $c$ does not mean that photons or neutrinos are moving faster thsn the speed of light.
Il preprint è di appena una paginetta: è una breve analisi nella scrive che è possibile per la velocità di gruppo essere maggiore rispetto a quella della luce, come hanno mostrato alcune osservazioni sperimentali. La storia di queste osservazioni inzia nel 1982(1), ma una interessante collezione di lavori sull'argomento si può trovare in Bigelow(7) e Gehring(11). Sperimentalmente, quando alcuni impulsi viaggiano all'interno di un mezzo altamente dispersivo, possono avvenire una serie di effetti esotici, e uno di questi è una velocità di gruppo negativa, che coincide con una velocità superluminale.
Nei lavori di Bigelow e Gehring non c'è una vera e propria spiegazione teorica. Ad esempio Bigelow propone:
(...) la combinazione di differenti sezioni d'urto d'assorbimento e del tempo di vita medio degli ioni Cr3+ sia nei siti di riflessione sia in quelli di inversione all'interno del reticolo cristallino di BeAl2O4. L'ondadi propagazione supeluminale è prodotta da un antibuco stretto [612 Hz] nello spettro di assorbimento degli ioni Cr3+ nei siti di riflessione dell'alessandrite, e la luce lenta si origina da un ancora più stretto buco nello (8.4 Hz) nello spettro di assorbimento degli ioni Cr3+ nei siti di inversione.
Nel modello il gruppo di Bigelow ha anche considerato
(...) l'influenza degli ioni sia nei siti di inversione sia in quelli di riflessione. In più, le sezioni d'urto di assorbimento sono assunte differenti a differenti lunghezze d'onda.

Le frecce indicano le localizzazioni dei siti ionici che hanno simmetria di riflessione o di inversione. Sulla destra, i corrispondenti diagrammi energetici per gli ioni Cr3+ per i diversi siti.