Stomachion

Visualizzazione post con etichetta modello standard. Mostra tutti i post
Visualizzazione post con etichetta modello standard. Mostra tutti i post

martedì 31 dicembre 2024

Quarkonio. Toponio.

20241229-toponium
Dalla serie di preprint che vi ho segnalato nel post dedicato, ho escluso Discriminating between Pseudoscalar Higgs and Toponium States at the LHC and Beyond, dove si discute su come distinguere tra due ipotetiche particelle teoriche, un tipo di bosone di Higgs previsto da alcune particolari estensioni del modello standard da un lato, e il toponio, o toponium, dall'altro.
Il motivo è che così posso fornirvi le classiche due righe sul toponium. Quest'ultimo, infatti, è un ipotetico mesone costituito dal quark top e dal suo anti-quark. E' un particolare tipo di quarkonio, o quarkonium, e si ritiene che prima o poi lo si dovrà trovare visto che gli altri "gusti" di quarkonium sono stati scoperti: lo (o meglio uno) charmonium nel 2005 dall'esperimento BaBar, e il bottomonium (o per meglio dire la prima particella che rientra in questa classe) nel 1977 al Fermilab. Tra l'altro la prima nuova particella scoperta all'LHC è stata proprio un bottomonium nel dicembre del 2011, ovvero qualcosa come sette mesi prima dell'annuncio della scoperta del bosone di Higgs.

mercoledì 4 marzo 2020

Particelle familiari

Il bosone di Higgs ha trainato per molti anni la comunicazione scientifica italiana. Testi sulla meccanica quantistica, il modello standard e argomenti correlati sono stati successivamente arricchiti dalla scoperta della particella mancante al quadro che i fisici della particelle avevano costruito sul mondo microscopico, quello dei mattoni fondamentali su cui è costruito l'universo. Raccontare questo mondo e la sua rivoluzione è dunque al tempo stesso semplice e complesso: semplice per via di ciò che è ormai saldamente consolidato, complesso per via di ciò che ancora non si sa, oltre che della gran mole di testi divulativi che parlano, e anche bene, dell'argomento. Per cui Particelle familiari potrebbe sembrare l'ennesimo libro di divulgazione sull'argomento "modello standard e dintorni", oppure l'ennesimo libro sulla scoperta del bosone di Higgs, visto che il suo autore, Marco Delmastro, lavora proprio per l'esperimento ATLAS, la grande collaborazione che ha scoperto, insieme con i "concorrenti" del CMS, le tracce di questo sfuggente bosone. Alla fine è entrambe le cose, ma anche qualcosa di più, e anche qualcosa di meno, in perfetto stile quantistico.

mercoledì 6 novembre 2019

Divergenza ultravioletta

La prima volta in cui la fisica si imbatté in una divergenza fu la catastrofe ultravioletta: nello studio della radiazione di corpo nero, utilizzando l'approccio della fisica classica, le equazioni di Maxwell prevedevano un rilascio di radiazione elettromagnetica con potenza infinita da parte del corpo nero, cosa non verificata sperimentalmente. Il problema venne risolto grazie alla meccanica quantistica e all'idea che l'energia viaggia in pacchetti minimi ben definiti a partire dalla costante di Planck.
D'altra parte lo sviluppo moderno della meccanica quantistica meglio noto come modello standard delle particelle elementari si porta dietro un altro piccolo problema, una divergenza che spunta in alcune particolari situazioni che è anche nota come divergenza ultravioletta. In questo caso per risolvere la presenza degli infiniti nel modello si applica la tecnica della rinormalizzazione. Questa, da un punto di vista matematico, è l'equivalente del mettere sotto il tappeto gli infiniti del modello: quando si calcolano gli integrali, una volta determinato quale degli estremi conduce a una divergenza, lo si sostituisce con una quantità piccola a piacere (tipicamente i problemi avvengono proprio con 0), per poi applicare le opportune approssimazioni che permettono di far convergere i termini che prima portavano a divergenze non eliminabili.
Questo continua a restare un problema matematicamente non risolto del modello standard, almeno fino a oggi, visto che su arXiv è comparso un draft che nel titolo recita così: A new method of eliminating ultraviolet divergence in perturbation theory. I due autori, i fisici cinesi Hua Zhang e Mingshun Yuan, propongono una versione opportunamente definita della delta di Dirac, una "funzione" (i matematici non sarebbero molto d'accordo nel definirla così!) utilizzata per calcolare le quantità fisiche con cui confrontare il modello con gli esperimenti (lo so, sto semplificando!). Ovviamente, vista anche l'ora tarda, lascio alla comunità dei fisici teorici il compito di esaminare ed eventualmente assimilare le tecniche matematiche utilizzate dei due fisici cinesi. E magari nel frattempo ci do un'occhiata approfondita anche io.

giovedì 6 settembre 2018

Introdurre la fisica delle particelle con le arti visuali

Ho scovato su Physics Education un articolo interessante su un progetto che, utilizzando l'arte, introduce agli studenti il meraviglioso mondo delle particelle elementari. Vi propongo una traduzione dell'introduzione e della parte introduttiva al workshop che gli studenti hanno portato avanti nel corso dell'attività.
La scoperta dell'elettrone da parte di Thomson nel 1897 inaugurò un'era di scoperte e di una sempre più profonda comprensione dei meccanismi interni del microcosmo. Questa culminò, 115 anni più tardi, con la scoperta del bosone di Higgs che ha completato il Modello Standard delle particelle. Allo stato attuale, come al tempo di Thomson, ci sono diverse domande aperte che richiedono un breakthrough sperimentale per trovare risposta.
Con questo intellettualmente stimolante stato di cose l'abilità delle arti visuali di attirare ed esprimere potrebbe alimentare la curiosità del pubblico più giovane verso la fisica delle particelle, indipendentemente dagli studi che potrebbero intraprendere in futuro. Ciò è stato confermato durante una collaborazione artistica culminata nella mostra The sketchbook and the collider, dove è apparso evidente che, nonostante le ovvie differenze, entrambe le specializzazioni si occupano di rendere visibile l'invisibile. Gli sviluppi scientifici hanno visto il 'quotidiano' dissolversi nelle interazioni subatomiche accessibili solo esaminando le tracce lasciate in un mezzo opportuno. Un processo specchiato dall'espressione artistica di pensieri, emozioni e intuizioni attraverso la realizzazione di marchi e la manipolazione di materiali.

venerdì 20 gennaio 2017

Le grandi domande della vita: la gravità del calcolo

Come avevo previsto, conoscendomi, è nata una nuova serie di post a partire da quello iniziale con Goku, One-Punch Man et al. D'altra parte su Quora di domande interessanti e curiose se ne trovano a bizzeffe, quindi dovrei avere abbastanza materiale per il futuro.
Iniziamo con una domanda fondamentale:
Lei balla da sola
Una delle questioni più intriganti della fisica teorica attuale è l'unificazione delle forze fondamentali in un'unica grande interazione che avrebbe agito nei primi istanti dell'universo (o la cui rottura potrebbe essere alla base dell'espansione iniziale: al momento la si può vedere più o meno come si vuole!). L'ostacolo principale a questo progetto è la gravità. Perché?
Da un lato ci sono argomentazioni legate alla presunta natura geometrica della gravità, considerata espressione della forma dello spaziotempo e non sua plasmatrice. Dall'altro esistono alcuni problemi tecnici per la sua quantizzazione. Il modo più semplice per riasumerli è utilizzare l'approccio di Viktor Toth: la gravità non è rinormalizzabile.
Nell'usuale Modello Standard, quando ci troviamo di fronte a particolari integrali che apparentemente sembrano divergere, possiamo troncarne il calcolo con una buona approssimazione: questo approccio viene aplicato, ad esempio, ai loop, linee chiuse costituite dai percorsi possibili dell particelle e che, in lnea di prncipio, possono essere infinitamente allungati, questo perché ogni particella elementare libera si porta dietro (diciamo così) un codazzo di fotoni che a loro volta possono generare nuove particelle con il loro personale codazo, e così via. Se dal punto di vista matematico tale processo potrebbe andare avanti all'infinito, non così fisicamente parlando, questo perché, come detto all'inizio, il Modello Standard è rinormalizzabile, o se preferite la serie di creazioni successive è, dal punto di vista energtico, convergente.
Il problema con la gravità risiede propri in questo punto: loop come quelli presenti nelle altre interazioni fondamentali sono, sotto certe condizioni, divergenti. Questo vuol dire che, in qualche modo, bisogna modificare la descrizione matematica della gravità. Se non addirittura anche del Modello Standard. Questa, però, direi che è una storia un po' più complicata.

mercoledì 30 dicembre 2015

Gita al CERN su Topolino #3136

@TopolinoIT goes to @CERN cc @marcodelmastro
Paperino e Paperoga vanno al CERN: dopo attenti controlli nessun cavo risulta staccato!
Un paio di anni fa circa un gruppo di fumettisti capitanato da Andrea Plazzi era andato in gita al CERN. Il primo risultato di questo incontro è stato OraMai di Tuono Pettinato, uscito in occasione di Lucca Comics 2014. Sull'ultimo numero di Topolino del 2015 (o primo del 2016, dipende se si prende per buona la data d'uscita o quella indicata sulla copertina) ecco comparire una breve storia di 6 pagine di genere graphic journalism ad opera di Francesco Artibani e Giuseppe Ferrario che racconta in breve ai lettori del settimanale disneyano cos'è il CERN e cosa si sta facendo presso i suoi laboratori.
Acceleratori, particelle e bosoni
A guidare Paperino e Paperoga, i due inviati speciali disneyani, ci sono Antonella Del Rosso, editor del CERN Bulletin e del CERN Courier, Marco Delmastro, uno dei fisici di ATLAS, immagino noto ai lettori di DropSea e ultimamente anche ai lettori di fumetti, e Fabiola Gianotti, che dal 1° gennaio 2016 ricoprirà la carica di direttore del CERN anche grazie al ruolo centrale avuto nei giorni che annunciarono al mondo la scoperta del bosone di Higgs.
Le spiegazioni all'interno di Elementare, Paperino! sono belle, semplici ed efficaci e come nello stile di questi graphic reportage topolineschi Ferrario disegna i personaggi disneyani nel suo stile originale con un corredo di fotografie e illustrazioni ufficiali.
A farla da padrone è ATLAS, il grande rilevatore di particelle che insieme con CMS ha rilevato le tracce del bosone di Higgs che hanno permesso di completare la descrizione sperimentale prevista dal modello standard delle particelle elementari.
Ricordando, poi, il ruolo centrale del CERN nello sviluppo dell'architettura dietro il www, è a mio giudizio importante tanto quanto il ruolo scientifico ricoperto dai laboratori anche il ruolo di messaggero di pace, molto ben enfatizzato da un paio di vignette che sottolineano la provenienza mondiale dei fisici e ingegneri che collaborano al funzionamento di LHC.

martedì 25 novembre 2014

In breve: la cascata dei barioni

In maniera semplice si può parlare di meccanica quantistica nel momento in cui si descrivono le proprietà delle particelle utilizzando i numeri interi. Fatti quei primi passi all'inizio del XX secolo, come fisici abbiamo descritto le particelle utilizzando i così detti numeri quantici in grande abbondanza: la loro scoperta era sempre legata alla scoperta di nuovi decadimenti che non potevano essere altrimenti spiegati senza violare la conservazione di un qualche numero quantico precedentemente noto. Uno dei numeri quantici più evocativi (e forse per qualcuno anche tra i più romantici!) è il colore, utilizzato per descrivere i quark, e da cui deriva il nome del modello che descrive le interazioni tra queste particelle elementari: la cromodinamica quantistica (QCD).
La cornice teorica della QCD(1, 2) ha permesso di predire tutta una serie di barioni, le particelle costituite da tre quark (come protoni e neutroni), tra cui spiccano i barioni Xi, detti anche particelle cascata a causa della loro instabilità, che li porta a decadere rapidamente attraverso una catena (cascata) di decadimenti successivi. A livello di costituenti interni, essi si presentano come un quark up o un quark down e due quark di massa superiore (strange, charm e bottom). La teoria prevede l'esistenza di una ventina di $\Xi$, dalla cui lista mancano al momento 4 barioni: la prima di queste particelle venne scoperta all'interno dei raggi cosmici nel 1952(3) (quindi prima che venisse formulata la teoria della cromodinamica quantistica), mentre la prima scoperta in laboratorio è del 1959(4). Gli ultimi tre barioni della famiglia ad essere stati scoperti, hanno, invece, lasciato traccia all'interno dei rivelatori dell'LHC, in particolare in CMS nel 2012(5) e di recente in LHCb(6): questa nuova scoperta, se confermata, porterebbe l'ennesimo punto a favore del modello standard e, per traslato, alla generazione di fisici teorici che hanno contribuito a costruirlo.
(via ScienceNews)

martedì 8 ottobre 2013

Il credito dovuto a Peter Higgs

L'annuncio del luglio 2012 della scoperta di un nuovo bosone ha in pratica dato inizio a quella che per molti è la volata di Peter Higgs verso il Premio Nobel per la Fisica, un percorso certo irto di polemiche visto che il meccanismo che sta alla base della predizione teorica dell'esistenza di questa particella è dovuto a un folto gruppo di persone, partendo da Englert e Brout citati dallo stesso Higgs in uno dei suoi tre articoli sull'argomento.
Higgs, infatti, decise di preparare il terreno per la sua scoperta matematica attraverso due articoli preparatori, usciti entrambi nel 1964, che rispetto all'ultimo, pubblicato nel 1966, potremmo quasi definire divulgativi.
Nonostante questo alcuni ingredienti necessitano di alcuni chiarimenti. Innanzitutto il concetto di simmetria, che dovremmo avere più o meno tutti quanti (basta guardarci allo specchio e osservare che le nostre metà destra e sinistra sono approssimativamente uguali) e il conseguente concetto di rottura di simmetria, ovvero quando una simmetria non è più valida (ad esempio quando ci guardiamo allo specchio e le due metà destra e sinistra presentano delle differenze evidenti, magari a causa di un qualche incidente). Una simmetria, ad ogni modo, è, più o meno tecnicamente, una trasformazione dello spazio che non modifica la distanza tra i punti del sistema su cui agisce. Una qualunque grandezza che da questa simmetria viene lasciata invariata è detta invariante di quella trasformazione, quindi quando si "parlerà" di Lorentz-invariante, ciò che si intende è che l'oggetto (o la teoria) viene lasciato invariato dall'azione della simmetria identificata come trasformazione di Lorentz. E quest'ultima è anche la trasformazione di simmetria su cui si basa la relatività, scoperta quando si capì che le equazioni di Maxwell non erano invarianti sotto l'azione delle trasformazioni di Galileo.
Tutto questo è necessario per capire quanto seguirà a breve: innanzitutto si parte con il teorema di Goldstone, secondo cui ogni soluzione di una teoria Lorentz-invariante, ovvero di una qualunque teoria le cui equazioni sono lasciate invariate dall'azione di una trasformazione di Lorentz, e che viola una simmetria interna di tale teoria deve contenere una particella scalare senza massa(1).
Mentre Klein e Lee hanno mostrato che tale teorema non è necessariamente valido per una teoria non relativistica, Gilbert fornisce una dimostrazione del fatto che il fallimento del teorema di Goldstone nel caso non relativistico non può accadere quando si impone l'invarianza per Lorentz(1).
E' qui che si incastra il lavoro di Higgs, che nel primo di tre articoli del 1964 mostra che gli argomenti di Gilbert falliscono per una serie di teorie di campo in cui le correnti conservate sono accoppiate ai campi di gauge(1).
Conseguenza di questi accoppiamenti è l'acquisizione di massa da parte dei campi di gauge di spin 1, le cui particelle corrispondenti coincidono con i bosoni di Goldstone quando l'accoppiamento tende a zero(2).
Dopo aver fatto tutta una serie di calcoli qualitativi e, come li ha definiti lo stesso Higgs, classici, il fisico teorico britannico arriva all'importante conclusione che, quando si introduce un ulteriore meccanismo per rompere la conservazione del numero quantico $Y$, uno dei campi di gauge coinvolti acquista massa, lasciando il solo fotone come particella messaggero priva di massa(2).
L'ultimo passo avviene poco più di un anno dopo (quasi due, editorialmente parlando) con la proposizione di una teoria relativistica semplice dove come conseguenza della rottura spontanea della simmetria $U(1)$, uno dei bosoni scalari risulta privo di massa, come da teorema di Goldstone. Quando, però, si passa dalle trasformazioni di simmetria globali a quelle locali, il bosone di Goldstone in pratica acquista massa(3).
In questo caso $U(1)$ è il gruppo di simmetria dei numeri complessi di norma 1 (o più tecnicamente è il gruppo unitario delle matrici unitarie $1 \times 1$: in un certo senso potete immaginare il gruppo $U(1)$ come i punti di un cerchio di raggio 1 senza commettere degli errori eccessivi in tale raffigurazione.
Ad ogni modo tutti questi elementi qui raccontati sono alla base del lavoro di Peter Higgs (che per me il Nobel lo merita grazie a questa semplice lezione di stile), quello che tanto sta facendo parlare di sé visto che in moltissimi puntano su di lui come vincitore del Nobel per la Fisica 2013 che verrà a breve assegnato. Ed è anche per questo che mi sono preso la briga di tradurre una lettera inviata da John Ellis a Science in risposta a un focus di Adrian Cho dal titolo esplicito Who Invented the Higgs Boson?.

sabato 1 giugno 2013

L'universo di Lisa Randall

La fisica teorica più famosa del mondo, Lisa Randall, ieri pomeriggio era a Milano, al Planetario Ulrico Hoepli, per una conferenza all'interno della Next Fest organizzata da Wired. La Randall, che si presenta al pubblico del Planetario (non pienissimo, purtroppo) con una conferenza dal titolo Fisica, tecnologia e multidimensionalità, discute essenzialmente del suo lavoro come fisica teorica, di LHC e di ATLAS e della scoperta del bosone di Higgs.
La conferenza inizia con una introduzione sulle scale che ci circondano, da quella macroscopica a quella microscopica e di come sia necessario utilizzare la scala opportuna per approcciarsi a problemi differenti e per realizzare osservazioni differenti. Il modo migliore per capirlo è, per esempio, osservare un oggetto reale specifico utilizzando scale differenti: ad esempio la Torre Eiffel a Parigi:

giovedì 18 aprile 2013

Il bosone, lo spin e il gravitone

ATLAS ha rilasciato un lavoro, immagino allo stadio preliminare, sullo spin del nuovo bosone. I canali di decadimento esaminati sono gli ormai famosi 4: $H \rightarrow \gamma \gamma$, $H \rightarrow WW^*$, $H \rightarrow l\nu l\nu$, $H \rightarrow ZZ^* \rightarrow 4l$. L'idea è quella di combinare i dati dai 4 canali di decadimento per capire quale sia lo spin di questo nuovo bosone, in particolare per distinguere tra due casi, spin 0 ($J^P = 0^+$), e quindi un bosone compatibile con il Modello Standard, e spin 2 ($J^P = 2^+$), che potrebbe essere collegato con un modello (arXiv) che presenta un accoppiamento leggero tra i campi del Modello Standard e l'ipotetico gravitone.
Queste le conclusioni di ATLAS:
I dati sono in buon accordo con le distribuzioni attese di una particella con $J^P=0^+$ mentre il modello ispirato al gravitone con $J^P=2^+$, che ci si aspetta essere prodotto principalmente attraverso un processo di fusione gluonica, è escluso con un livello di confidenza di oltre il 99,9%.
Potremmo quindi dire che sta iniziando il processo di eliminazione dei modelli che dovrebbero guidare la ricerca della nuova fisica nei prossimi anni. Difficile ipotizzare che alla fine ne resterà solo uno, non è nella tradizione della fisica, ma nei tanti che restano un posto d'onore resterà sicuramente al Modello Standard, come lo studio di ATLAS sullo spin del nuovo bosone ha confermato ancora una volta.
Interessante, poi, notare come nel seminario tenuto ieri a Brera da Corrado Lamberti, parlando della SUSY, la teorie supersimmetrica che vorrebbe superare il Modello Standard con un balzo realmente storico, ha affermato qualcosa del tipo:
Il campo di Higgs spunterebbe naturalmente e non sarebbe una aggiunta al Modello Standard
E' in particolare nell'ultima parte che si sintetizzano tutte le critiche principali al bosone di Higgs e al meccanismo che ha permesso di scoprirlo: è sempre stato considerato una aggiunta non troppo naturale, o spontanea al Modello stesso. Forse l'intero problema andrebbe visto in questa prospettiva differente: non è il campo di Higgs a dover essere aggiunto al Modello Standard, ma piuttosto l'inverso, ovvero la matematica del Modello Standard che in qualche modo dovrebbe innestarsi o venir generata dalla matematica del campo di Higgs.

mercoledì 10 aprile 2013

I cieli di Brera 2013 e la scoperta del bosone di Higgs

Riprende l'attività di conferenze divulgative dell'Osservatorio Astronomico di Brera. Quest'anno si inizia con Corrado Lamberti che il 17 aprile 2013 alle 18 racconterà all'uditorio che si presenterà alla Sala delle Adunanze dell'Istituto Lombardo in via Brera de La scoperta del bosone di Higgs.
Proprio sull'argomento Lamberti, astronomo e divulgatore, ha scritto per l'editore Aliberti il libro Il bosone di Higgs. Il trionfo del Modello Standard o l'alba di una nuova fisica?:
Quando i ricercatori celebrano un significativo successo delle loro teorie, quando le idee convergono verso un modello unico, organico, autoconsistente, è il momento di trasmettere al grande pubblico l'insieme delle conoscenze accumulate in decenni di attività teorica e sperimentale. Per la fisica delle particelle, il momento è adesso. Al CERN di Ginevra, il 4 luglio 2012, nel corso di una storica conferenza, i fisici del Large Hadron Collider hanno annunciato di aver scoperto una nuova particella che potrebbe essere il bosone di Higgs, la cui esistenza era stata ipotizzata quasi cinquant'anni fa e che finora era sfuggita a ogni tentativo di rivelazione. Il bosone di Higgs, responsabile del conferimento di una massa a tutte le particelle, era l'ultimo tassello che mancava per completare il quadro di quello che viene chiamato Modello Standard delle Particelle Elementari, una mirabile costruzione che rappresenta la migliore descrizione che attualmente abbiamo del mondo ultramicroscopico. Come si è giunti a formulare questo modello? Attraverso quali intuizioni, deduzioni, verifiche sperimentali? Questo libro ripercorre l'intera storia della fisica delle particelle, avviata giusto cent'anni fa dalla scoperta dei raggi cosmici e del nucleo atomico, e proseguita con la rivelazione dell'antimateria, con l'individuazione delle due interazioni nucleari, la debole e la forte, con la scoperta del neutrino e con l'ipotesi dell'esistenza dei quark.
Di seguito il sommario di tutta l'attività per il 2013, che potete consultare anche sul sito dell'Osservatorio:

giovedì 5 luglio 2012

Scoperta di un bosone

Ultimamente ho trascurato un po' i lettori di DropSea, concentrando gli sforzi dedicati al bosone di Higgs su Doc Madhattan, iniziando lunedì con i risultati definitivi di Tevatron. Direi, quindi, che è venuto il momento per me di unirmi ai commentatori italiani della faccenda, dopo che altri colleghi blogger hanno festeggiato l'evento con la tipica intelligenza e sobrietà degli scienziati, mentre i giornali uscivano con titoloni incredibili e a volte, obiettivamente, assurdi (leggetene uno dalle parti di Luca Di Fino).
Iniziamo con il riassumere la giornata di ieri (lo ammetto, ho quasi sbagliato la previsione, ma sono stato contento di essermi sbagliato, ad ogni modo): al mattino, a partire dalle 9, nell'auditorium del CERN a Ginevra i due esperimenti ATLAS e CMS, entrambi con grandi presenze italiane, hanno presentato gli ultimissimi risultati sulla ricerca sperimentale del bosone di Higgs.
A iniziare le danze è stato Joe Incandela per CMS, che con una voce che tremava dall'emozione ha mostrato dati, grafici e i risultati sull'eccesso già mostrato nel seminario tenutosi nella prima metà di dicembre 2011. Le novità, comuni anche con ATLAS, i cui dati sono stati presentati da una impeccabile Fabiola Gianotti (a me il Comic Sans piace!!!), rispetto a quella conferenza: il completamento dell'esame dei dati del 2011 e i dati dei primi sei mesi di collisioni del 2012. Il risultato è diventato evidente proprio grazie ai dati del 2012 (il completamento dei dati del 2011, come si vedrà in maniera evidente in una immagine successiva proposta proprio da ATLAS, sembrava andare addirittura verso un peggioramento nella qualità) e il motivo lo spiega molto bene Marco Delmastro:
nel 2012 si è fatto lo sforzo di portare questa energia [l'energia di collisione dei fasci nel centro di massa] a 8 TeV
Il motivo?
il ritmo di produzione atteso del bosone di Higgs aumenta con l'aumentare dell'energia delle collisioni, e aumenta di più di quanto non aumenti il ritmo di produzione di quasi tutti i rumori di fondo. In sostanza, a 8 TeV il rapporto segnale/rumore è più favorevole che a 7 TeV. Il che significa che, a parità di dati analizzati, a 8 TeV le probabilità di vedere un segnale aumentano, anche in modo sostanziale.
E proprio grazie a questa scelta ecco che i frutti vengono colti sia da CMS
sia da ATLAS
I risultati possono allora così essere riassunti: CMS vede un eccesso con massa $m_H = 125.3 \pm 0.6 GeV$ e una significatività di $4.9 \sigma$; ATLAS vede un eccesso con massa $m_H = 126.5 GeV$ e una significatività di $5.0 \sigma$.
Possiamo allora liberare la gioia: abbiamo visto una nuova particella!
Innanzitutto cerchiamo di capire questa faccenda dei sigma, che Marco spiega in una serie di tre post (lanciare i dadi, Il significato di un eccesso, Zone di rumore di fondo controllato) e che io cercherò, qui, di spiegare nel modo più breve e completo possibile.
La distribuzione maggiormente utilizzata per descrive gli eventi casuali (nel senso degli eventi in cui entra in gioco la probabilità) che ci circondano è la distribuzione gaussiana, una forma a campana il cui picco si trova nel punto a maggiore probabilità, quello che, se ripeti le misure più e più volte, scoprirai di aver trovato più spesso degli altri. La larghezza della campana viene misurata attraverso una quantità chiamata deviazione standard, la sigma, $\sigma$. Se alla fine del mio esperimento fornisco il dato della media della distribuzione e dico di fornirlo con una significatività di $1 \sigma$ sto affermando di aver coperto poco meno del 67% della campana. Infatti se mi sposto, a destra e a sinistra della media, di $1 \sigma$, avrò racchiuso poco meno del 67% dei punti appartenenti alla distribuzione. Già se arrivo a $3 \sigma$ ho coperto il 99.7% della campana, ovvero posso rendere conto del 99.7% dei dati contenuti nella mia distribuzione. Se però riesco a fornire il dato con una significatività di $5 \sigma$, allora quello che sto facendo è coprire il 99.99...% della distribuzione, ovvero quasi tutta la distribuzione a disposizione (ricordiamo che c'è sempre quel piccolo margine di incertezza nella scienza, che cerchiamo sempre di ridurre al minimo o di esplorare non appena ne abbiamo le possibilità tecnologiche).
Per poter dire non solo di aver scoperto una particella, ma di essere in grado di rilevarne una già scoperta, devo quindi fornire i miei risultati con una significatività di $5 \sigma$, che in pratica rappresenta una conoscenza quanto più possibile completa della zona che sto esplorando. Se poi a questo unisco anche il problema che devo cercare di ridurre al minimo il mio errore, e quindi anche la $\sigma$, si capisce che questo compito è tanto più complesso quanto più è, ad esempio, sofisticato lo strumento che sto utilizzando, o quanto più è incredibile la sfida che sto affrontando. E la sfida del bosone di Higgs è certamente una sfida piuttosto complicata, per molti motivi. Come vedremo tra poco.

Un decadimento con 4 elettroni candidato come decadimento di un Higgs registrato ad ATLAS nel 2012 (fonte ATLAS)

sabato 25 febbraio 2012

La massa del W e il Particle Data Group

Questo post partecipa alla 29.ma edizione del Carnevale della Fisica di Marzo 2012 ospitato da Marco Casolino

Il punto di partenza è il modello standard delle particelle elementari. Esso è costituito da quattro interazioni fondamentali: gravità, elettromagnetismo, forza nucleare forte e forza nucleare debole. In particolare quest'ultima è responsabile dei decadimenti radioattivi e della fusione dell'idrogeno nelle stelle. I bosoni di questa interazione (ovvero le particelle scambiate tra i due fermioni che stanno interagendo) sono $W^\pm$ e $Z$. Un esempio di interazione debole è il decadimento del pione $\pi^+$:
Questi tre nuovi tipi di bosoni vennero predetti da Glashow, Weinberg e Salam(1) e quindi scoperti al CERN nel 1983 grazie a una serie di esperimenti condotti da Carlo Rubbia e Simon van der Meer(2). Da pochi giorni, però, grazie a una delle ultime analisi provenienti da dati del Tevatron, siamo in possesso di un nuovo valore della massa del $W$ da aggiungere a quelli fin qui collezionati. A proporre la nuova misura è l'esperimento CDF: \[M_W = (80.387 \pm 0.019) GeV\] Combinando questo valore con le altre misure in nostro possesso, si arriva al valore preliminare definitivo che dovrebbe (il condizionale è d'obbligo) essere pubblicato sul Particle Data Group:
E' molto importante, infatti, capire che il valore di $(80.390 \pm 0.016) GeV$ diventerà la nuova massa del $W$ solo dopo la pubblicazione del preprint di CDF (pdf) su una rivista referata e dopo che questo valore verrà inserito nella scheda della particella sul Particle Data Group. E questo sembra non essere stato compreso dai lettori di Tommaso, che ha dato l'annuncio sul suo blog e, soprattutto, ha cercato di spiegare in termini semplici tutto il processo sperimentale e l'analisi dei dati che ha portato alla misura specifica e dunque alla nuova proposta. Ad esempio Wired ha preso per buono il risultato di CDF, nonostante sia preliminare, operando anche la solita semplificazione giornalistica (e un po' popperiana), prendendo il risultato della collaborazione come una sorta di spugna che cancella tutto quello che c'era in precedenza. E una situazione piuttosto antipatica, con gente che arriva per aggiornare un dato non ancora ufficiale, sta accadendo su en.wiki con due versioni (1 e 2) modificate e prontamente riportate allo stato originario questa notte (e una terza dal sottoscritto nel pomeriggio).
Prima che questa follia prenda piede anche in Italia, magari con qualche giornalista che nel fine settimana non sa come riempire la propria colonna e allora parte andando dietro a Wired (quello statunitense, e non il nostrano!), spieghiamo anche cosa sia il Particle Data Group. In poche parole è un gruppo internazionale di fisici che si sono fatti carico di mettere ordine tra i dati sperimentali provenienti dalla fisica delle particelle. Compilano, ogni anno circa per il web, e ogni due anni anche per il cartaceo, le schede delle particelle (con tutte le loro proprietà come numeri quantici e massa), e delle interazioni fondamentali, andando a pescare i dati proprio dalle pubblicazioni referate. Tutto questo lavoro, che diventa così la fonte principale (ma dovrebbe anche essere l'unica) per i dati delle particelle usiamo negli articoli di fisica viene pubblicato su due riviste, il Review of Particle Physics e la sua versione tascabile Particle Data Booklet.
Per cui, fino alla pubblicazione della nuova scheda, il valore della massa del $W$ resta ancora $(80.399 \pm 0.023) GeV$(3).

sabato 1 ottobre 2011

Tevatron: sempre al top!

Ieri si è celebrato l'ultimo giorno di lavoro del Tevatron, l'acceleratore di particelle statunitense che ha fatto concorrenza agli acceleratori europei del Cern, compreso l'LHC. Il Tevatron iniziò a prendere i primi dati di fisica nel 1985, nella notte del 13 ottobre e da allora ha mietuto non pochi successi, che vengono efficacemente riassunti da Tommaso su Quantum Diaries. In particolare il primo risultato dell'acceleratore è anche una delle tantissime conferme del modello standard che abbiamo avuto negli ultimi 30 anni: la scoperta del quark top.
Il modello standard delle particelle elementari prevede l'esistenza di 6 tipi differenti di quark, che combinati tra loro costituiscono la così detta materia barionica (particelle pesanti come protoni e neutroni, e particelle intermedie come i mesoni). Questi costituenti ultimi della materia vennero introdotti in quello che all'inizio veniva identificato genericamente come modello a partoni, sviluppato indipendentemente uno dall'altro da Murray Gell-Mann(1) e George Zweig(2, 3) nel 1964. All'inizio la teoria prevedeva l'esistenza di tre soli quark (up, down, strange), ma lavori successivi di altri fisici teorici consentirono di completare l'impianto teorico con altri tre quark. In particolare nel 1972 Makoto Kobayashi e Toshihide Maskawa(6) supposero l'esistenza di un nuovo quark, il top, in un articolo con il quale introducevano la violazione della simmetria CP all'interno dell'interazione debole, scoperta da Weinberg tra il 1967(4) e nel 1971(5). In particolare scrissero la parte adronica della lagrangiana in quattro termini: cinetico, massivo, forte e $L'$. Seguendo il meccanismo di Higgs(9), i due teorici supposero che la violazione di CP potesse trovarsi nel termine massivo, a causa del meccanismo di rottura spontanea della simmetria di gauge.
I loro calcoli sono calcoli di teoria dei gruppi: possiamo infatti immaginare il gruppo che Kobayashi e Maskaea hanno usato come uno spazio generato (o costituito) a sua volta da due spazi 4-dimensionali (ciascuno di questi spazi è il gruppo $SU (4)$). Essi descrissero tre possibili partizioni per ciascuno dei due spazi vettoriali(10):
  1. due sottospazi bidimensionali;
  2. uno spazio bidimensionale e due monodimensionali;
  3. 4 spazi monodimensionali.
I due si limitarono solo a quelle combinazioni che avevano un qualche senso fisico e scoprirono che, come conseguenza della rottura della simmetria, bisognava introdurre nella teoria un nuovo partone, quel quark top che sarebbe stato scoperto proprio al Tevatron nel 1995:

(dall'articolo di D0)

(dall'articolo di CDF)
I due grafici sono estratti dagli articoli dei due esperimenti che rilevarono il top. Dall'articolo di D0 ho estratto il grafico che confronta i due esperimenti uno con l'altro e quindi con la teoria, mentre dall'articolo di CDF il grafico che ricostruisce la massa del top e ne da anche una prima misura (il riquadro in alto a destra nel secondo grafico).
Dopo questa velocissima storia del top, vi lascio con un video realizzato da Maria Scileppi in collaborazione con Rob Snihur, ricercatore del Tevatron:

sabato 24 settembre 2011

In corsa con i neutrini

Saprete già che il mondo dell'informazione è rimasto sconvolto dai dati dell'esperimento Opera sui neutrini superluminari. Anche il sottoscritto si è concentrato per provare a gettare un po' di acqua sul fuoco. Le reazioni alla notizia, infatti, sono state tra le più disparate: si andava dai catastrofisti disperati per il crollo di Einstein e della relatività (speciale e generale) a quelli addirittura contenti, un po' come quei bambini che sono contenti di dirti che hai sbagliato. Personalmente, pur richiedendo, come hanno fatto gli stessi ricercatori di OPERA, una verifica da parte di un altro esperimento, ho pensato bene di sottolineare come la relatività speciale e il modello standard, le due teorie che sarebbero direttamente collegate con il risultato, non crollerebbero né verrebbero falsificate, come invece vorrebbe il pensiero popperiano ben poco amato nel mondo della scienza e della fisica in particolare. Per fare questo ho scritto due post per Doc Madhattan, Waiting the superluminal neutrinos e From maxwell to Einstein. In particolare il primo ha avuto una quantità incredibile di visitatori ed è stato anche segnalato su Oggi Scienza (un grazie a Stefano Dalla Casa, che spero mi legga anche su queste pagine in italiano!). Cercherò, ora, di riassumere la posizione raccontata in quei due brevi post perché mi sembra giusto e doveroso nei confronti dei lettori italiani.
Iniziamo con le equazioni di Maxwell: \[\vec \nabla \cdot \vec E = \frac{\rho}{\varepsilon_0}\] \[\vec \nabla \cdot \vec B = 0\] \[\vec \nabla \times \vec E = - \frac{\partial \vec B}{\partial t}\] \[\vec \nabla \times \vec B = \mu_0 \vec J + \mu_0 \varepsilon_0 \frac{\partial \vec E}{\partial t}\] Queste equazioni vennero pubblicate da James Maxwell in una serie di quattro articoli, dal titolo On Physical Lines of Force, di cui il primo uscì nel 1861, e servono per descrivere il comportamento del campo elettromagnetico. Il problema, all'uscita delle equazioni, non fu tanto la correttezza della descrizione, quanto la loro non invarianza rispetto alle trasformazioni di Galileo. Per accettare il lavoro di Maxwell, quindi, sembrava di dover dire che quelle trasformazioni erano sbagliate. In realtà, più che quelle trasformazioni ad essere sbagliate, semplicemente le equazioni descrivevano un sistema invariante sotto un'altro tipo di trasformazioni di simmetria, le trasformazioni di Lorentz: \[\begin{cases} t' &= \gamma \left( t - \frac{v x}{c^2} \right) \\ x' &= \gamma \left( x - v t \right)\\ y' &= y \\ z' &= z \end{cases}\] E' semplice, almeno in un corso di fisica, ricavare le trasformazioni di Lorentz nel momento in cui si testano le equazioni di Maxwell con le trasformazioni di Galileo: si trovano i termini che non vanno e si modificano opportunamente le seconde per ottenere le prime. Il passaggio dalle trasformazioni, scoperte nel 1887, alla fisica genera poi la relatività speciale di Einstein con tutto quel che ne consegue. Ora, considerando che è possibile definire la velocità della luce usando le costanti $\mu_0$ e $\varepsilon_0$ e che l'elettromagnetismo si fonda proprio sui quanti di luce, sostituire anche all'interno della relatività speciale la presunta velocità dei neutrini misurata da OPERA vorrebbe dire suggerire che i neutrini (che sono fermioni) sono i veri bosoni dell'interazione elettromagnetica! E' con questo spirito che la relatività speciale è da considerarsi corretta anche nel caso di conferma del risultato di OPERA, non incidendo questo realmente sull'universo elettromagnetico, che poi è quello che abbiamo fino ad ora la capacità di sperimentare. E in questo universo la relatività speciale domina. Il risultato di OPERA, se verificato, ci costringerà, però, a proporre una serie di nuove idee. Alcune ho provato io stesso a immaginarle:
  1. cambiare l'interazione debole, che è l'unica, insieme alla gravità, che oggi sappiamo influenzi i neutrini(3);
  2. approfondire un eventuale legame quantistico tra neutrini e spaziotempo(4);
  3. immaginare una nuova interazione esclusiva dei neutrini(5);
  4. altre idee che al momento non mi vengono (o che sono così radicali da non voler raccontare)(6);
La scienza, in sostanza, avanza in questo modo: c'è qualcuno che investiga un fenomeno e ne ricava dei dati, quindi li espone al pubblico accademico (e a volte anche a quello non accademico) per chiederne una verifica (dei calcoli, se il lavoro è teorico, dei dati, se sperimentale), e quando questa verifica arriva si potrà decidere se siamo di fronte a una scoperta o a un errore (che può essere di calcolo, per una teoria, o statistico, per un esperimento).
La scienza è così: procede a passi, e le sue rivoluzioni, per quanto veloci, hanno bisogno di tempo, ma non spazzano o falsificano le teorie precedenti, quando queste sono efficaci. In fondo le teorie di Newton e Galileo sono ancora qui tra noi, con tutta la loro efficacia. Quindi anche relatività speciale e Modello Standard, nonostante i catastrofisti o i bambini dispettosi, resteranno ancora qui valide. Andranno, ma lo sappiamo già, estese. Bisognerà trovarne i limiti. Ed è questo il nostro compito per il futuro, ed è anche uno dei compiti di LHC e di molti altri esperimenti nel mondo.

P.S.: Mi sembra doveroso, nell'ordine, segnalare nell'ordine una trascrizione del seminario di OPERA e la sua versione registrata per quelli che se lo sono perso; le considerazioni di Marco Delmastro sul preprint di OPERA; quelle inviate a Jon Butterworth, del Guardian, da un componente anonimo di OPERA che non ha firmato il preprint e che ha espresso le sue perplessità (non molto diverse da quelle di Marco) sul risultato diffuso.
Infine mi corre quasi l'obbligo di segnalarvi l'ultima polemica ministeriale firmata Mariastella Gelmini, ma questa, probabilmente, la conoscete già...

martedì 2 agosto 2011

Accerchiando il bosone di Higgs

Ne avevo già scritto in inglese, ma con colpevole ritardo vi riferisco di alcune novità riguardanti il bosone di Higgs e uscite dalla conferenza EPS sulla fisica delle alte energie(1), tenutasi a fine luglio, dal 24 al 27 se non ricordo male.
Tutto inizia con il comunicato stampa del Fermilab che, combinando i dati degli esperimenti D0 e CDF, ha diffuso i nuovi limiti di massa(2) per il bosone di Higgs, ovvero tra i 114 e i 137 GeV/c2. Ovviamente non potevano mancare nemmeno le collaborazioni ATLAS e CMS con l'esposizione dei loro dati, che però sembrano essere ben poco ottimistiche non solo nei confronti del Tevatron, ma anche del bosone stesso.
Iniziamo dando un'occhiata ai grafici (via Résonaances, Tommaso Dorigo):

Come vedete i due esperimenti europei hanno in comune con il Tevatron solo una piccola regione compresa tra circa 115 GeV e 140 GeV. I dati di queste regioni saranno probabilmente analizzati e pubblicati entro la fine dell'anno, per cui dovremmo presto sapere se il Tevatron potrebbe scoprire l'Higgs o meno(3), ma soprattutto potremmo avere un'idea più precisa di che Higgs ci dovremmo aspettare.
Per chiarire meglio questo aspetto potrebbe essere interessante dare un'occhiata al grafico riassuntivo realizzato di Philip Gibbs, dove potrete notare come quella piccola regione in comune tra Tevatron e LHC e l'ultima regione disponibile all'interno della previsione del modello standard:

martedì 26 luglio 2011

Un nuovo barione neutro al Fermilab

In origine (la fine degli anni Sessanta del XX secolo) lo zoo delle particelle(1) è un modo colloquiale per descrivere la lunga lista di particelle elementari, un serraglio cui solo il Modello Standard è riuscito a mettere ordine. Con la sua accettazione, infatti l'MS è stato in grado di identificare tre famiglie fondamentali di particelle le cui interazioni una con l'altra consentono di spiegare la creazione delle particelle non elementari, riducendo gli ingredienti fondamentali a 16 particelle suddivise in leptoni, quark (che insieme costituiscono i fermioni, particelle con spin semi-intero) e bosoni (le particelle a spin intero che mediano l'interazione consentendo lo scambio dei numeri quantici):
Possiamo classificare le particelle anche in una serie di sottofamiglie, come ad esempio quella dei barioni, particelle pesanti costituite da tre quark: ad esempio protonee neutrone sono barioni con composizione interna rispettivamente di uud e udd, dove u è il quark up e d quello down.
Conosciamo sei tipi di quark: up (u) e down (d), già incontrati e che spiegano protoni e neutroni, e quindi charm (c), strange (s), top (t) e bottom (b) che spiegano le altre particelle pesanti in base a una serie di combinazioni tra i quark stessi che possono essere visualizzate in grafici come il seguente:
Nella parte superiore ci sono le particelle con momento angolare $J = 1/2$ mentre in quella inferiore quelle con momento angolare $J = 3/4$. Oggi ci concentriamo sul gruppo con $J = 1/2$, in particolare sull'ultima scoperta di CDF, una delle collaborazioni del Tevatron presso il Fermilab, infatti non tutte le particelle predette dall'MS sono state trovate, e la caccia è ancora aperta.
Il 20 luglio, Pat Lukens ha annunciato la prima osservazione di $\Xi_b^0$, un barione con la struttura usb:
Per poter rilevare questo nuovo barione, i ricercatori del Tevatron devono ricostruire i seguenti canali di decadimento: